# ESTIMATES OF THE LIFE TABLE FUNCTIONS OF THE PHILIPPINES: $1970^{1}$ 

By

Luisa T. Engracia ${ }^{2}$

## I. INTRODUCTION -

There are three determinants in the growth of population of a country, namely, fertility, mortality and migration. Since the end of the Second World War, however, migration has played an insignificant role in the growth of most nations. As Immigration Laws were enacted, the gains or losses of population through migration have been minimal. Hence, in the present time with the exception of a few cases, the growth of a nation is.. measured practically the balance between its births and deaths. Births increase the population; deaths bring it. down. A country beset with a problem of population. control tries to find the solution in terms of reductions: in its birth rate. Indeed, it is noteworthy to mention the fact that, inspite of the mounting gravity of the problem of population control, mortality has not been advocated as a means of checking population growth. Of: course, it will never be. The sanctity of human life is still uppermost in man's considerations toward the solution of his problem. He would rather try to bar the entrance into life than hasten the departure from it. Such is the line of action man has chosen as regards. this ever pressing population dilemma.

The factor of mortality is an integral part of demographic analysis. In planning and policy making af-

[^0]fecting human population, mortality must be duly considered since it alters not only the quantity but also the quality of the future population of a country. It is clear that in order to obtain a better forecast of a population, it is essential to make a close investigation of the mortality conditions, its prevailing rate as well as its possible future course.

This paper attempts to assess the mortality conditions of the Philippines during the recent times through the use of some quantitative measures. The crude death rate, which is the simplest and most common of the mortality measures, will be estimated. Unfortunately, the crude death rate is not a very efficient measure since it is strongly affected by the age-structure of the population. For this reason, other mortality indices, as defined by the functions of a life table, will be estimated. Because of limitations in the data, however, the life table functions that will be constructed herein will be at 5 -year age interval. From this abridged life table, the more complete life table by single year of age will be derived by interpolation. A more detailed description of the life table and its construction will be given in a later chapter.

## II. THE DATA: THEIR SOURCES, USES AND LIMITATIONS -

In the Philippines, as in other developing countries of the world, research studies pertaining to population are severely handicapped by the unavailability and/or inadequacy of required data. The vital registration in the country, which would have been the best source of data for mortality analysis, is still far from being adequate as regards completeness and coverage. There is still a long way to go before one can rely solely on it for obtaining acceptable estimates of death rates. One recourse would have been through sample surveys but, unfortunately, the few demographic surveys conducted in the Philippines put more emphasis on fertility than on mortality. Under these circumstances, the best data for an analysis of mortality conditions are those obtained from population censuses, particularly, the age and sex distribution of the population.

The Philippines is fortunate to have had several censuses in the past that provide us with a picture of how the population of the country has grown over the years. Table 1 shows the population of the country as enumerated during four (4) census periods as well as the observed intercenal growth rates, for each sex.

## TABLE 1

Enumerated Population of the Philippines and the Annual Growth Rates, by Sex, for Four Census Years: 1939, 1948, 1960 and 1970

| Year | Enumerated Population |  |  | Annual Growth Rate for the Period (In per cent) ${ }^{\text {b }}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Male | Female | Sex Ratio ${ }^{\text {a }}$ | Male | Female |
| 1939 | 8,065,281 | 7,935,022 | 101.6 | 184 | 194 |
| 1948 | 9,651,195 | 9,582,987 | 100.7 | 1.84 | 1.94 |
| 1960 | 13,622,869 | $\cdot 13,424,816$ | 101.8 | 3.06 2.83 | 2.96 3.10 |
| 1970 | 18,250,351 | 18,434,135 | 99.0 | 2.83 | 3.10 |

- Sex Ratio $=\frac{\text { Male }}{\text { Female }} \times 100$
${ }^{5}$ Exponential rate of growth computed as $r=\frac{1 n P_{t}-\ln P_{0}}{t}$
The table shows that the population of the country has continously grown at a very high rate during the last couple of decades. This has been brought about by conditions of constant and very high birth rates but moderately low and declining mortality rates. Relatively low growth rates, especially for males, were observed during the intercensal period 1939-1948 obviously because of the Second World War. Between 1948 and 1960, the male growth rate exceeded that of the female but, again, seemed to slacken during the last intercensal period. The sex ratios, on the other hand, indicate that during the earlier censuses, there was always an excess of males over females; in 1970, the situation reversed.

The above observations seem to point out that sex differentials in mortality has widened recently with a
bias against the males. These are, however, only empirical observations. A more thorough investigation is necessary for a more solid conclusion.

The principal data to be used in this study are agesex distribution of the population as obtained during the 1960 and 1970 censuses. In addition, data on the number of registered deaths by age and sex for a period of five years from 1968 to 1972 will be utilized to establish a trend and age-pattern of death occurrences.

A census, which is a massive operation of data coilection is especially subject to errors on account of its voluminous nature. Since the principal data that will be used in this study are obtained from censuses, it is deemed necessary to make an evaluation of these data before deriving estimates and making conclusions out of them.

The age-sex distributions of the population and the sex ratios for 1960 and 1970 are shown in Table 2. A brief evaluation of these data reveals the following striking observations:

1. A low overall sex ratio in the 1970 Census data as compared to that of 1960 . When mortality level is moderately low, a decline in the death rate is usually accompanied by an increase in the sex ratio of the population. This happens because at such level, reductions in the male death rate tend to be greater than the female death rates, thus, resulting to a greater proportion of male survivors. Since it is most natural to assume mortality decline in the Philippines during the last decade, the decrease of the sex ratio from 101.8 in 1960 to 99.0 in 1970 is quite beyond the expected. This creates a suspicion that in 1970, there must have been a serious undercount of males.
2. Sudden drop of sex ratios at the working age groups, particularly, from ages 15 to 35 . It might be added that the previous censuses reveal almost similar pattern of sex ratios which lead us to believe that the observed behaviour of the sex ratios is not really due to inherent characteristic of the population but to

## TABLE $\dot{2}$

## Age-Sex Distribution and Sex Ratio for the Philippines: 1960 and 1970

| Age Group | 1960 |  |  | 1970 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Male | Female | Sex Ratio | Male | Female | Sex Ratio |
| Total | 13,622,869 | 13,424;816 | 101.8 | 18,250,351 | 18,434,135 | 99.0 |
| 0 | 404,391 |  | 105.8 | 517,882 | 499,304 | 103.7 |
| 1-4 | 1,949,647 | 1,836,304 | 106.2 | 2,447,138 | 2,372,299 | 103.2 |
| $5-9$ | 2,254,566 | 2,114,832 | 106.6 | 3,001,138 | 2,893,678 | 103.7 |
| 10-14 | 1,765,992 | 1,669,435 | 105.7 | 2,547,453 | 2,478,421 | 102.8 |
| 15-19 | 1,384,759 | 1,429,547 | 96.9 | 1,982,775 | 2,096,954 | 94.6 |
| $20-24$ | 1,194,182 | 1,264,441 | 94.4 | 1.526,518 | 1,624,124 | 94.0 |
| 25-29 | 952,368 | 1,100,981 | 95.1 | 1,188,980 | 1,271,248 | 93.6 |
| $30-34$ | 764,978 | 791,473 | 96.6 | 1,007,755 | 1,063,781 | 94.7 |
| $35-39$ | 702,568 | 725,906 | 96.8 | 940,630 | 958,014 | 98.2 |
| $40-44$ | 546,393 | 552,585 | 98.9 | 931,954 | 752,921 | 97.2 |
| 45-49 | 524,638 | 508,045 | 103.3 | 625,864 | 656,328 | 95.4 |
| $50-54$ | 365,354 | 344,745 | 106.0 | 501,964 | 513,632 | 97.7 |
| 55-59 | 252,394 | 235,536 | 107.2 | 402,892 | 404,715 | 99.5 |
| 60-64 | 231,786 | 199,118 | 116.4 | 311,285 | 302,336 | 103.0 |
| 65-69 | 112,702 | 113,126 | 99.6 | 191,463 | 196,717 | 97.3 |
| $70-74$ | 106,799 | 102,141 | 104.6 | 150,574 | 141,690 | 106.3 |
| $75-79$ | 55,731 | 54,280 | 102.7 | 62,660 | 67,912 | 92.3 |
| 80-84 | 48,484 | 50,862 | 95.3 | 52,052 | 61,547 | 84.6 |
| 85 \& Over | 45,137 | 49,386 | 91.4 | 49,032 | 59,216 | 82.8 |
| Not Stated | - | - | - | 10,342 | 19,298 | 53.6 |

some recurrent enumeration errors. The errors are of two possible types. The first is that there could have been an underenumeration of males in these age groups. This is not a remote possibility considering the fact that this particular group are very migratory so that during. census taking, they could hardly be found in their usual places of residence. The second type of possible error is an overcount of females in the age group mentioned. However, the overcount does not necessarily mean double counting of females. It could be a case of misreporting of ages where women in the older ages could have reported themselves younger than they actually were.
3. A lower growth rate of males during the last. decade. Although males do have a higher death rate, this should be upset by the fact that more male babies. are born. Hence, the net addition of population by sex should be higher for males. This again supports the hypothesis of male underenumeration during the last census. It is not, however, presupposed that the 1960 count was devoid of errors. More likely, the same type of errors could be present in both sets of data although evidences seem to point that the error was more serious. in the 1970 Census.

Unfortunately, for lack of other substantial proof, it is not quite possible to arrive at a relatively accurate estimate of the undercount. Therefore, it was decided not to adjust the data on the age-sex distributions as an effort to correct the alledged discrepancy. It is enough to realize the limitations of the data as a guide in interpreting the results.

## III. SOME ESTIMATES OF THE CRUDE DEATH RATE,

 IN THE PHILIPPINES -In the absence of accurate mortality data, the crude: death rate may be estimated using population data. The accuracy, of course; of the estimates will depend on the accuracy of the data to be used as well as on the methods of estimation to be followed. In this paper, three different methods were tried, each, of course, subject to its own limitations. The estimates derived herein should be regarded in the light of the assumptions formulated. under each method.
A. The Differencing Method. -

The first such method is the so-called differencing method whereby the number of deaths during the intercensal period is obtained by getting the difference between the population of 1960 (to which are added the births of the period) and the population of 1970 . In symbols:

$$
\mathrm{D}_{\mathrm{A}}=\mathrm{P}_{\mathrm{O}+}{ }^{60}-\mathrm{P}_{10+}{ }^{70}
$$

represents the number of deaths among those who were already alive in 1960 while,

$$
\mathrm{D}_{\mathrm{B}}=\mathrm{B}^{60070}-\mathrm{P}_{0-9}^{\text {io }}
$$

represents the deaths from the cohort born between the period 1960 and 1970. The total number of deaths between 1960 and 1970 is therefore:

$$
\begin{equation*}
\mathrm{TD}=\mathrm{D}_{\mathrm{A}}+\mathrm{D}_{\mathrm{B}} \tag{1}
\end{equation*}
$$

Unfortunately, $D_{B}$ cannot be directly measured since the number of births during the period, of which $\mathrm{P}_{0-9}{ }^{70}$ are survivors, is not known. It can be estimated, however, as a fraction, $R$, of the number of deaths among those who were already alive at the earlier census, that is,

$$
D_{B}=R D_{A}
$$

It follows then that:

$$
\begin{equation*}
\mathrm{TD}=\mathrm{D}_{\mathrm{A}}(1+\mathrm{R}) \tag{2}
\end{equation*}
$$

Note that the value of R varies from year to year within the period 1960 to 1970. For example: R, in 1961, is $\frac{D_{0}}{D_{1}+}$; in 1962, $\frac{D_{01}}{D_{2}+}$;in 1963, $\frac{D_{02}}{D_{3}+} \ldots .$. etc., where
where $D_{0}$ represents the number of deaths at age $0 ; D_{1-!-}$; deaths at age 1 and above; $\mathrm{D}_{0-1}$; deaths at age 0 and 1 ; and so on. For a single value of R, it was decided to use the value for 1965 which is the mid-point of the interval. Furthermore, R was estimated using the number of registered deaths, that is,

$$
\begin{equation*}
R=\frac{D_{0-4}}{D_{5-1-}} \tag{3}
\end{equation*}
$$

where: $D_{0-4}=$ registered number of deaths at ages 0 to 4 1965, and

$$
\begin{aligned}
D_{5-1-}= & \text { registered number of deaths at ages } 5 \\
& \text { and above in } 1965 .
\end{aligned}
$$

One major drawback in the use of the differencing method is that vital registration, on which the estimate of $R$ is based, is grossly deficient. If the degree of underregistration of deaths had been uniform for all ages, the estimated value of $R$ would have been near the true value. However, it is well known that it is at the very young ages that deaths are very seriously underregistered so that R so obtained is on the lower side pulling down, as a result, the estimate of the total number of deaths for each sex.

Based on the estimate of the total number of deaths, as given by formula 2, the Crude Death Rate was computed as follows:

$$
\mathrm{CDR}=\frac{\text { annual number of deaths }}{\text { average population }} \times 1000
$$

$$
\begin{aligned}
& =\frac{\frac{1}{10}(\mathrm{TD})}{\frac{1}{2}\left(\mathrm{P}_{60}+\mathrm{P}_{70}\right)} \times 1000 \\
& =\frac{\mathrm{TD}}{5\left(\mathrm{P}_{60}+\mathrm{P}_{70}\right)} \times 1000
\end{aligned}
$$

Note that the value of the CDR obtained in this manner is for the middle year of the intercensal period, that is, around 1965.

The above procedure was applied to the data for each sex to give us estimates of male and female crude death rates separately. The details of the computation are shown in Table 3.

## TABLE 3

The Differencing Method of Estimating the Crude Death Rate

|  | Both Sexes | Male | Female |
| :---: | :---: | :---: | :---: |
| 1. $\mathrm{P}_{0-1-1}{ }^{80 \mathrm{a}}$ | 27,307,966 | 13,791,199 | 13,516,767 |
| 2. $\mathrm{P}_{10-1-}{ }^{70}$ | 24,943,623 | 12,280,810 | 12,662,813 |
| 3. $\mathrm{D}_{\mathrm{A}}[(1)-(2)]$ | 2,364,343 | 1,510,389 | 853,954 |
| 4. R | . 7907 | . 8130 | . 7644 |
| 5. TD [(3) $\mathrm{x}(1+(4))]$ | 4,245,051 | 2,738,335 | 1,506,716 |
| 6. Annual Number of Deaths [(5)/10] | 424,505 | 273,833 | 150,672 |
| 7. 1960 Population | 27,307,966 | 13,791,199 | 13,516,767 |
| 8. 1970 Population | 36,684,486 | 18,250,351 | 18,434,135 |
| 9. 1965 Population $[(7)+(8) / 2]$ | 31,996,226 | 16,020,775 | 15,975,45I |
| 10. Crude Death Rate $[(6) /(9) \times 1000]$ | 13.27 | 17.09 | 9.43 |

## B. The Stable Population Approach.-

The second set of estimates of the crude death rate utilizes the concept of a stable population. A stable population, as conceived, is one which is characterized by an unchanging age structure and a constant annual rate of increase as a result of the following necessary conditions: ${ }^{1}$

[^1]1. the population is closed to migration
2. fertility and mortality schedules have remained

Under this theory, the age structure of a stable population is said to be independent of the initial age distribution and is determined solely by the unchanging levels of fertility and mortality. Hence, the age distribution of a stable population is constant. However, since a moderate decline in mortality rates does not seriously alter the stability of the age distribution of a population, the methods of estimating vital rates through the stable population approach may also allow for a steady and gradual decline in mortality. In this particular case, the population is said to be quasi-stable.

In applying the stable population concept to the population of the Philippines, there is one great objection and, that is, the constancy of fertility rates. In the absence of more reliable data, it cannot be precisely stated whether fertility level has remained constant or not. Based on the age structure observed during the last several censuses, the proportions of children have remained fairly constant which implies that fertility, too, has been constant for several decades. But, again, this fact should be taken lightly inasmuch as census figures may have been distorted by errors. The reader is therefore warned that the estimates of the vital rates that will be derived herein should be weighed against the validity of the assumption that fertility is constant.

In the stable population, the constant age distribution is described by the following basic relationship:

$$
\begin{equation*}
\mathrm{C}(\mathrm{x})=\mathrm{be} \mathrm{e}^{-\mathrm{x}} \mathrm{p}(\mathrm{x}) \tag{4}
\end{equation*}
$$

where: $c(x)=$ proportion of the population aged x to the total population.
b $\quad=$ constant birth rate of the population.
e $\quad=$ base of the system of natural logarithms.
r $=$ annual rate of growth.

$$
\begin{aligned}
& \mathrm{p}(\mathrm{x})=\text { the probability at birth that a person } \\
& \text { will live up to age } \mathrm{x} .
\end{aligned}
$$

We know that in a life table of radix 1 ,

$$
1_{x}=p(x)
$$

Therefore, equation 4 may be written in the form:

$$
c(x)=b e^{-r x} l_{x}
$$

Extending this formula to quinquennial age groups, we obtain:

$$
\begin{equation*}
C(x, x+5)=\operatorname{be}^{-r(x+2.5)_{5}} L_{x} \tag{5}
\end{equation*}
$$

where: $\quad C(x, x+5)=$ proportion of the population in the age group x to $\mathrm{x}+5$ to the total population.
b.r $\quad=$ as defined.
$\begin{aligned} & x+2.5=\text { the mean age at the age group. } \\ & \text { to } x+5\end{aligned}$
${ }_{5} \mathrm{~L}_{\mathrm{x}} \quad=$ the life table stationary population at age x to $\mathrm{x}+5$

Equation 5 may be written as:

$$
\begin{aligned}
& \qquad \operatorname{lm} \frac{c(x, x+5)}{{ }_{5} L_{x}}=\ln b-r(x+2.5) \\
& \text { If we let, } y=\ln \frac{C(x, x+5)}{{ }_{5} L_{x}}, \text { and } a=\ln b
\end{aligned}
$$

then equation (5) becomes:

$$
y=a-r(x+2.5)
$$

This is actually the equation of a straight line in which the slope $r$, is the annual rate of growth of the population.

The object then is to find the set of ${ }_{5} \mathrm{~L}_{\mathrm{x}}$ values (from the Model Life Tables) ${ }^{2}$ which when fitted to equation 5 , together with the observed values of $C(x, x+5)$, gives value of $r$ which is very close to the observed annual rate of growth of the population. ${ }^{3}$ The level of mortality of the selected Model Life Table is then said to be ascribable to the actual population and the corresponding stable population may then be used as estimates of the vital rates of our population.

Detailed steps of fitting equation (5) by least squares methods are shown in tables 4A and 4B. With observed growth rates of $2.832 \%$, for males and $3.102 \%$ for females, their respective estimated levels of mortality based on the Model "West" of the Princeton Model Life Tables, are 12.45 and 13.48. These levels give us the following estimates of the vital rates, by sex, as of 1970:

|  | Death Rate |  | Birth Rate |  |
| :--- | :---: | :---: | :---: | :---: |
|  |  |  | 46.19 |  |
| Male |  |  | 45.52 |  |
| Female | 14.78 |  | 45.81 |  |

## C. The Use of the Crude Birth Rate and the Vital Index.-

A third method was devised that would not be very sensitive to the errors observed in the census count. It calls first for an estimation of the crude birth rate and, on the basis of that, plus other known characteristics of the population, a derivation of the crude death rate.

The total number of births is estimated by the Reverse Survival Method ${ }^{4}$ in which the approximate number of births is determined on the basis of the reported number of children 1970. The results are shown in Table 5. Consequently the estimated crude birth rates are 43.30 ,

[^2]TABLE 4-A
The stable population approach of estimating mortality level
applied to the male population of the Philippines: 1970

| Age Group | $C(x . x+5){ }^{\prime} /$ | Model West ${ }_{5} \mathrm{~L}_{\mathrm{x}}$ b/ | $\underset{{ }_{5} L_{x}}{C(x, x+5)}$ | $\begin{gathered} \text { Level } \\ \mathrm{Y}=\ln \underset{{ }_{5}}{\mathrm{C}}(\mathrm{~L}, \mathrm{x}, \mathrm{x}+5) \\ \hline \end{gathered}$ | Model West ${ }_{5} L_{x}{ }^{b} /$ | $\begin{gathered} \mathrm{C}(\mathrm{x}, \mathrm{x}+5) \\ { }_{5} \mathrm{~L}_{\mathrm{x}} \end{gathered}$ | $\begin{aligned} & \text { Level } \\ & \mathrm{Y}=\ln \underset{{ }_{5}}{\mathrm{C}} \mathrm{~L}_{\mathrm{x}}(\mathrm{x}, \mathrm{x}+5) \\ & \hline \end{aligned}$ | X |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| (1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) |
| 10-14 | 13.9962 | 388654.5 | . 000035934 | -10.233806 | 374710.6 | . 000037271 | -10.197269 | -5 |
| 15-19 | 10.9804 | 381507.4 | . 000009185 | -11.597839 | 221093.7 | . 000029622 | -10.426967 | -4 |
| 20-24 | 8.3681 | 371407.3 | . 000028493 | -10.465842 | 366960.7 | . 000023495 | -10.658700 | -3 |
| 25-29 | 6.5185 | 359298.8 | . 000021936 | -10.727339 | 355199.5 | . 000018986 | -10.871795 | -2 |
| 30-34 | 5,5250 | 346160.1 | . 000018142 | -10.917265 | 343327.1 | . 000016773 | -10.995682 | -1 |
| $35-39$ | 5.1570 | 331379.3 | . 000015960 | -11.045373 | 329379.2 | . 000016435 | -11.016065 | 0 |
| 40-44 | 4.0129 | 31.4197 .1 | . 000015562 | -11.070664 | 313771.5 | . 000013567 | -11.207867 | 1 |
| 45-49 | 3.4313 | 394037.5 | . 000012771 | -11.268262 | 295782.8 | . 000012479 | -11.291460 | 2 |
| $50-54$ | 2.7520 | 269814.2 | . 000011669 | -11.358523 | 274965.1 | . 000010992 | -11.418293 | 3 |
| 55-59 | 2.2088 | 2404550 | . 000010199 | -11.493161 | 250351.5 | . 000009990 | -11.513892 | 4 |

2/ Proportion of the population aged $x$ to $x+5$ to the total population in 1970
b/ Obtained from the Princeton Model Life Tables
The straight line equations of $Y$ fitted by the Least Squares Method are:
Level 13: $\mathrm{Y}=-10.003905-.0289920(\mathrm{x}+2.5) ; \mathrm{r}_{1}=.0288920$
Level 12: $\mathbf{Y}=-9.984835-.0278561(x+2.5) ; r_{2}=.0278561$
Interpolating linearly between $r_{1}$ and $r_{2}$ for $r=.0283270$ (the observed male
growth rate) we obtain the mortality level of 12.45 which gives a value
of the Crude Death Rate of 18.19 per thousand.
TABLE 4-B
The stable population approach of estimating mortality level applied to the female population of the Philippines: 1970

| Age Group | $C(x, x+5)^{\text {a }}$ | Model West ${ }_{5} L_{x} \mathrm{~b} /$ | $\underset{{ }_{5} L_{x}}{C(x+5)}$ |  | Model West ${ }_{5} L_{x} \mathrm{~b} /$ | $\underset{{ }_{5} L_{x}}{(x, x+5)}$ | $\underset{\mathrm{Y}=\ln }{\underset{{ }_{5}}{\text { Level }} \mathrm{L}_{\mathrm{x}}^{13}} \underset{(\mathrm{x}, \mathrm{x}+5)}{13}$ | X |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| (1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) |
| 10-14 | 13.4588 | 409865.0 | . 000032837 | -10.323950 | 397177.9 | . 000033886 | -10.292506 | -5 |
| $15-19$ | 11.3873 | 402839.9 | . 000028268 | -10.473796 | 389403.2 | . 000029243 | -10.439872 | -4 |
| 20-24 | 8.8196 | 393537.9 | . 000022411 | -10.705956 | 379397.2 | . 000023246 | -10.669362 | -3 |
| 25-29 | 6.9034 | 382571.3 | . 000018045 | -10.922656 | 367737.6 | . 000018773 | -10.883111 | -2 |
| $30-34$ | 5.7768 | 370506.2 | . 000015592 | -11.068776 | 354934.0 | . 000016276 | -11.025837 | -1 |
| 35-39 | 5.2024 | 357360.9 | . 000014558 | -11.137381 | 341008.5 | . 000015256 | -11.090543 | 0 |
| 40-44 | 4.0887 | 343105.4 | . 000011917 | -11.337566 | 326030.5 | . 000012541 | -11.286519 | 1 |
| $45-49$ | 3.5641 | 327342.8 | . 000010888 | -11.427852 | 309723.9 | . 000011507 | -11.372525 | 2 |
| $50-54$ | 2.7892 | 308361.8 | . 000009045 | -11.613274 | 290374.1 | . 000009606 | -11.553171 | 3 |
| 55-59 | 2.1978 | 2844003 | 000007728 | -11.770681 | 206258.8 | . 000010656 | -11.704767 | 4 |

[^3]
40.34 and 41.82 per thousand for males, females and both sexes, respectively.

The crude death rates are then derived from the above estimates of the crude birth rates and the observed vital index. It might be recalled that the vital index (VI) measures the ratio of the number of births to the number of deaths for any given year, that is:

$$
\mathrm{VI}=\frac{\text { number of births in a year }}{\text { number of deaths in the same year }}
$$

or
crude birth rate
$\mathrm{VI}=\frac{\text { crude death rate }}{}$
The vital index may be computed on the basis of the registered vital events. Even if birth and death registrations are incomplete, if they are so by the same degree, the vital index so computed will still be accurate. Unfor-tunately, this does not seem to hold true in the Philippines' Vital Registration System. Possibly because of the: requirement to secure a burial permit, death registration: has achieved a higher degree of completeness than has birth registration. In .1963, a study ${ }^{5}$ was made which showed that the number of births in a year that were actually registered represented only about $60 \%$ of the total births while the corresponding proportion of deaths was $70 \%$ and it appears that the level of registration has not increased at least until 1970.

This level is then used to adjust the computed vital index for the effect of the difference in the degree of completeness of birth and death registration. The average yearly value of vital indexes computed for the 5 -yearperiod from 1968 to 1972 is used to represent the vital: :index for 1970. This is done in order to minimize the effect of possible fluctuations in the number of vital events that were registered. The average value of VI

[^4]TABLE 5
Estimates of the Number of Births in the Philippines Between 1960 and 1970 by the Reverse Survival Method

Male
Female
A. Cohort born from May 1965 to May 1970
(aged 0-4 in 1970)

1. Survivors enumerated in May 1970
2. Mortality level, 1965-1970

2,966,701
2,874,612
3. Survival ration $P_{b}$
4. Estimated Births 1965-1970 ( $1 \div 3$ )

3,342,762
. 91708
3,134,527
B. Cohort born from May 1960 to May 1965
(aged 5-9 in 1970)

1. Survivors enumerated in May 1970
2. Mortality level 1965-1970

3,002,840
16
2,896,710
3. Survival ratio $P_{0-4}$
4. Estimated children 0-4 in May 1965 ( $1 \div 3$ ).
5. Mortality level 1960-1965
.96562
3,109,753
6. Survival ratio $\mathrm{P}_{\mathrm{b}}$
7. Estimated birth room 1960-1965 (4 $\div 6$ )
.87196
3,566,394
17
. 97441 2,972,784 16
. 90332 3,290,953
C. Total Estimated Births from 1960-1970

6,909,156
6,425,480
is substituted in the following relationship to obtain an estimate of the crude death rates:

$$
\begin{equation*}
\mathrm{CDR}=\mathrm{CBR} \div \mathrm{VI} \tag{6}
\end{equation*}
$$

The results are shown in Table 6 below:

## TABLE 6

Estimate of the Vital Rates and Vital Index for the Philippines: 1970

| Sex | Crude <br> Birth <br> Rate | Vital <br> Index | Crude <br> Death <br> Rate |
| :--- | :---: | :---: | :---: |
| $(1)$ | $(2)$ | $(3)$ | $(4)=2 \div 3$ |
| Both Sexes | 41.82 | 4.032194 | 10.37 |
| Male | 43.30 | 3.734531 | 11.54 |
| Female | 40.37 | 4.420776 | 9.12 |

A summary of the results obtained by using the three methods to estimate the crude death rate in the Philippines is given in Table 7.

The interpretation of the results should consider the fact that Method A applies for the year 1965 whereas Methods B and C, for 1970. There is quite a close agreement between the results of Methods A and C while the estimates by the use of Method B prove to be very high perhaps because the population of the Philippines does not really meet the conditions of stability.

Very wide differences in the estimates of male and female death rates are observed in the use of Methods A and B . This large discrepancy, however, can be attributed not so much to the prevailing sex differential ${ }^{6}$ in mortality as to faulty data. It has been observed earlier that, in 1970, the male population was more underenumerated than the female and that underenumeration was more serious at ages 15-29. $\mathrm{P}_{10-1-1}{ }^{\circ 0}$ for males was well

[^5]
## TABLE 7

Summary of Results on the Estimation of the Crude Death Rates, by Sex, in the Philippines

|  | Both Sexes | Male | Female |
| :---: | :---: | :---: | :---: |
| Method A - <br> Differencing Method | 13.27 | 17.09 | 9.43 |
| Method B - <br> Stable Population <br> Approach | 16.43 | 18.19 | 14.78 |
| Method C <br> Use of the CBR and VI | 10.37 | 11.59 | 9.12 |

[^6]on the low side yielding a high estimate of the number of deaths on the basis of the equation:
$$
\mathrm{D}_{\mathrm{A}}=\mathrm{P}_{\mathrm{O}+}{ }^{60}-\mathrm{P}_{10+}{ }^{70}
$$

Hence, by the Differencing Method, a high crude death rate for males was obtained. Similarly, the Stable Population Approach yielded a much higher death rate for males on account of its low growth rate observed in the last intercensal decade.

Of the three sets of estimates, it appears that the one obtained by the use of Method C gives the nearest estimates of the true values. This statement necessarily follows because this method made use of the population data such that the most serious error in the population count did not gravely affect the estimates as it did in the other two methods. For practical purposes, this set of estimates are adopted as the crude death rates for the country as of 1970; that is, 10.37 per thousand is the overall crude death rate, 11.59 per thousand for males, and 9.12 per thousand for females.

## IV. CONSTRUCTION OF A LIFE TABLE -

A. The Abridged Life Table. -

A life table may be constructed in a number of ways depending upon the information available in each situation. For example, in an extreme situation where only a count of the population at one point of time is available, the recourse may be an indirect estimation of life table functions using Model Life Tables. On the other hand, where data are complete and adequate for all purposes, more sophisticated methods of life table construction may be employed. Naturally, it goes without saying that where information are as detailed as possible, more precise results can be expected. It does not, however, preclude the fact that an acceptable level of accuracy is also achievable in cases where data are scanty. In fact, the accuracy of a constructed life table depends not only upon the amount and reliability of data used but also on the method by which these data are utilized.

In the conventional way of constructing a life table, the main problem is that of getting accurate measures of the central death rates (the ${ }_{n} m_{x}$ column of the Life Table) and translating them into probabilities of surviving from one age group to the next higher group. In the Philippines, in as much as the data on the number of deaths by age group are seriously deficient, direct measurement of age-specific death rates using Vital Registration records is not at all desirable. Estimates of the number of deaths at each age group have to be obtained somehow.

By multiplying the estimated crude death rate of each sex by the corresponding total population of 1970 , we would get an estimate of the aggregate number of deaths for that year. These aggregates can then be distributed into the different age groups for each sex, utilizing the age-sex distribution of deaths observed from Death Registration Data. The proportion of deaths at a particular age group was the average proportion observed for the 5 -year period from 1968-1972. Again, this was done in order to minimize the possible effects of yearly variations in vital event registration.

It is of course realized that this distribution is most probably distorted by the underregistration of deaths among infants and children, which has the effect of understanding the proportion of deaths in the younger groups and overstating the proportions in the older age groups. To what extent this will affect the life table functions will be treated in the succeeding discussions.

The columns or the functions of the abridged Life Table are explained in the following discussions. The derivations are herein described too.

1. The $1000{ }_{n} m_{s}$ column or the Central Death Rates or the Age Specific Death Rates.
$1000{ }_{n} m_{x}$ gives the number of persons from a group of 1000 all aged x to $\mathrm{x}+\mathrm{n}$ who will die before reaching the last age of that age bracket. In other words, it is the death rate specific for each age group as observed in the actual population.

This column is obtained as follows:

$$
\begin{equation*}
1000{ }_{n} m_{x}=\frac{D_{x, x-1-n}}{P_{x, x-1-n}} \times 1000 \tag{7}
\end{equation*}
$$

where:

$$
\begin{aligned}
\mathrm{D}_{\mathrm{x}, \mathrm{x}-1-\mathrm{n}}= & \text { the estimated number of deaths } \\
& \text { aged } \mathrm{x} \text { to } \mathrm{x}+\mathrm{n} \text { at year } \mathrm{t}
\end{aligned}
$$

If both the number of deaths and the population are under or overreported by the same percent, the mortality rates so computed will be accurate. At the very young ages, it is doubtless that the number of deaths and population count are understated. For the rest of the age groups, it can only be assumed that the type of underreporting and misstatement errors in death registration and population census are the same. Unfortunately,
data are very scanty to allow precise measurements of the extent of underreporting for each type of data. Hence, no effort is made to correct any error of understatement in the data used. Suffice it to say that the mortality risks derived using these data will be in error proportional to the difference in the percentage of reporting of deaths and population.
2. The ${ }_{n} q_{s}$ or the Probability of Death.
${ }_{n} q_{x}$ expresses the amount of risks that a person, whose exact age is x at the beginning of the period, will die before the end of an n-year period. In other words, it is the probability that a person at his $\mathrm{X}^{\text {th }}$ birthday will not live to celebrate his $\mathrm{x}+\mathrm{n}^{\text {th }}$ birthday.

The fundamental significance in the construction of a life table is the measurement of these probabilities on the basis of the observed death rates of the population.

In this paper, the formulae developed by Reed and Merrell ${ }^{\top}$ were adopted to express the relationship between ${ }_{n} q_{x}$ and ${ }_{n} m_{x}$. They are as follows:

$$
\begin{align*}
q_{0} & =1-e^{-\mathrm{m}_{0}\left(.0539 m_{0}\right)} \\
{ }_{4} & =1-e^{-4 m_{1}\left(.9806-2.079_{4} m_{1}\right)}  \tag{8}\\
{ }_{5} q_{x} & =1-e^{-5{ }_{5} m_{x}-.008(5)^{3}{ }_{5} m_{x}} \quad x=5,10 \ldots, 80 \tag{9}
\end{align*}
$$

3. The ${ }_{n} p_{x}$ or the Probability of Surviving.
${ }_{n} p_{x}$ refers to the probality that a person at exact age x will live to exact age $\mathrm{x}+\mathrm{n}$. This is obtained as follows:

$$
\begin{equation*}
{ }_{n} p_{x}={ }^{1-1} q_{\mathrm{n}} \tag{11}
\end{equation*}
$$

[^7]4. The $1_{z}$ or the Number of Survivors.
$1_{x}$ refers to the number of persons alive at exact age $x$. Actually, in a life table, $1_{x}$ represents the survivors, at age $x$, of an original cohort, the number of which is represented by the radix ${ }^{8}$ of the life table. To get $l_{x}$, the following formula is used:
\[

$$
\begin{equation*}
1_{\mathrm{x}}={ }_{\mathrm{n}} \mathrm{p}_{\mathrm{x}-\mathrm{n}} 1_{\mathrm{x}-\mathrm{n}} \tag{12}
\end{equation*}
$$

\]

5. The ${ }_{n} L_{x}$ or the Stationary Population of the Life Table.
${ }_{n} \mathrm{~L}_{\mathrm{x}}$ represents approximately the average number of persons in the life table who are aged $x$ to $x+n$. Putting it in another way, ${ }_{n} L_{x}$ is the number of person-years lived by the cohort from the beginning to the end of the age interval $x$ to $\mathrm{x}+\mathrm{n}$. Usually, this is obtained by getting the average of $1_{x}$ and $1_{x}+_{n}$ under the assumption that deaths are uniformly distributed within the age interval. In this particular abridged life table, however, the stationary population is derived from the corresponding $\mathrm{L}_{\mathrm{x}}$ column of the complete life table. (Please see discussion in the next section.)
6. The $T_{x}$ Column.
$\mathrm{T}_{\mathrm{x}}$ represents the remaining total number of person-years that would be lived by the survivors. at age x .

In symbols, this is:

$$
\begin{equation*}
T_{x}=\sum_{i=x}{ }_{n} L_{i} \tag{13}
\end{equation*}
$$

where summation is taken over all age grouping from x onwards.

[^8]7. The ${ }_{n} S_{x}$ or the Survival Ratios.

Survival ratios, denoted by ${ }_{n} S_{x}$, is the proportion of the number of persons in the stationary population aged x to $\mathrm{x}+\mathrm{n}$ to the number who are still alive $n$ year later. For $x=5$ and over, it is obtained by the following formula:

$$
\begin{equation*}
{ }_{n} S_{x}=\frac{{ }_{n} L_{x-1-\cdot n}}{{ }_{5} L_{x}} \tag{14}
\end{equation*}
$$

At birth and at ages 0-4, the survival ratios are computed as follows:

$$
\begin{equation*}
S(\text { birth })=\frac{{ }_{5} \mathrm{~L}_{0}}{51_{0}} ;{ }^{5} \mathrm{~S}_{0} \quad=\frac{{ }_{5} \mathrm{~L}_{5}}{\mathrm{~L}_{0}+{ }^{5} \mathrm{~L}_{1}} \tag{15}
\end{equation*}
$$

whereas for the highest age group, it is given by:

$$
\begin{equation*}
\mathrm{S}_{75}=\frac{\mathrm{T}_{80}}{\mathrm{~T}_{75}} \tag{17}
\end{equation*}
$$

8. The $e^{0}$ or the Expectation of Life.

The Life expectancy or expectation of life is perhaps the most significant of the life table functions. It represents the average number of remaining years a person who reaches age x can still expect to live, given the mortality schedule expressed by ${ }_{\mathrm{n}} \mathrm{q}_{\mathrm{x}}$. When $\mathrm{x}=0$, the function is popularly known as the expectation of life at birth. It is the average lifetime of a newly born baby who will be subjected to the mortality risks given by ${ }_{n} q_{x}$. The measure of life expectancy is obtained as follows:

$$
\begin{equation*}
\mathbf{e}_{\mathrm{x}}^{0}=\frac{\mathbf{T}_{\mathbf{x}}}{\mathrm{l}_{\mathrm{x}}} \tag{18}
\end{equation*}
$$

B. The Complete Life Table. -

In the complete life table, the $1_{x}$ column for ages between x and $\mathrm{x}+5$ is derived by interpolating the given value in the abridged life table. For values of $\mathbf{x}$ between 10 and 80, the Karup-King ${ }^{9}$ multipliers for osculatory interpolation are used. For $\mathrm{x}<10$, $l_{x}$ is obtained simply by free-hand interpolation since the Karup-King multipliers do not produce smooth interpolated values with fixed points at $\mathrm{x}=0,1,5$ and 10 . On the other hand, beyond age 80 , the $l_{x}$ column is extrapolated by fitting a curve of the form:

$$
\begin{equation*}
\mathrm{Y}=\mathrm{KA} \tag{19}
\end{equation*}
$$

The $\mathrm{L}_{\mathrm{x}}$ column is obtained using the assumption that deaths are evenly distributed within a given year of age, that is:

$$
\begin{equation*}
\mathrm{L}_{\mathrm{x}}=\frac{\mathrm{l}_{\mathrm{x}}+\mathrm{l}_{\mathrm{x}-1-1}}{2} \tag{20}
\end{equation*}
$$

However, since this assumption does not hold true at the every early years of life, $\mathrm{L}_{0}$ and $\mathrm{L}_{1}$ are obtained by the following formula:

$$
\begin{align*}
& \mathrm{L}_{0}=.276 \mathrm{l}_{0}+.724 \mathrm{l}_{1}  \tag{21}\\
& \mathrm{~L}_{1}=.410 \mathrm{l}_{1}+.590 \mathrm{l}_{2} \tag{22}
\end{align*}
$$

From these computed $L_{x}$ values, the ${ }_{n} L_{x}$ column of the abridged life table is obtained by adding the $L_{x}$ values between ages x to $\mathrm{x}+\mathrm{n}$.

The rest of the columns of the complete life: table are derived similarly as those of the abridged life table.

The estimated life table functions, abridged and complete, are shown in Table 8 (A and B); and 9 ( A and B ).

[^9]TABLE 8A
1970 LIFE TABLE OF THE PHILIPPINES: MALE

| Age | $1000 \mathrm{~m}_{\mathrm{n}}$ | ${ }_{0} q_{2}$ | ${ }_{\mathrm{n}} \mathrm{p}_{\mathbf{x}}$ | $1_{x}$ | ${ }_{0} L_{x}$ | $\mathrm{T}_{1}$ | $S_{x}$ | $e_{x}{ }^{\circ}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 103.824 | 0.088897 | 0.911103 | 100000 | 93564 | 5,524,429 | .893422* | 55.24 |
| 1 | 12.910 | 0.048057 | 0.951943 | 91110 | 353147 | 5,430,865 | . $962837 * *$ | 59.61 |
| 5 | 3.012 | 0.014954 | 0.985046 | 86732 | 430110 | 5,077,718 | . 988905 | 58.54 |
| 10 | 1.678 | 0.008359 | 0.991641 | 85435 | 425338 | 4,647,608 | . 990309 | 54.40 |
| 15 | 2.466 | 0.012260 | 0.987740 | 84721 | 421216 | 4,222,270 | . 983403 | 49.84 |
| 20 | 4.259 | 0.021088 | 0.978912 | 83682 | 414225 | 3,801,054 | . 976056 | 45.42 |
| 25 | 5.365 | 0.026498 | 0.973502 | 81917 | 404307 | 3,386,829 | . 971116 | 41.34 |
| 30 | 6.350 | 0.031290 | 0.968710 | 79747 | 392630 | 2,982,522 | . 966103 | 37.40 |
| 35 | 7.488 | 0.036800 | 0.963200 | 77251 | 379321 | 2,589,892 | . 959341 | 33.53 |
| 40 | 9.193 | 0.045003 | 0.954997 | 74409 | 363898 | 2,210,571 | . 949983 | 29.71 |
| 45 | 11.481 | 0.055911 | 0.944089 | 71060 | 345697 | 1,846,673 | . 935542 | 25.99 |
| . 50 | 15.433 | 0.074481 | 0.925519 | 67087 | 323415 | 1,500,976 | . 912472 | 22.37 |
| 55 | 21.436 | 0.102048 | 0.897952 | 62090 | 295107 | 1,177,561 | . 882696 | 18.97 |
| 60 | 28.646 | 0.134155 | 0.865845 | 55754 | 260489 | -882,454 | . 847552 | 15.83 |
| $\cdot 65$ | 38.095 | 0.174631 | 0.825369 | 48274 | 220778 | 621,965 | . 792697 | 12.88 |
| 70 | 56.444 | 0.248290 | 0.751710 | 39844 | 175010 | 401,183 | . 700229 | 10.07 |
| 75 | 90,355 | 0.368677 | 0.631323 | 29951 | 122547 | 226,173 | . 458171 | 7.55 |
| 80 | 190.809 | 0.628591 | 0.371409 | 18909 | 103626 | 103.626 | - | 5.48 |

* Survival ratio at birth.
* Survival ratio at age 0-5.

TABLE 8B
1970 LIFE TABLE OF THE PHILIPPINES: FEMALE

| A g e | $1000{ }_{n} \mathrm{~m}$ | ${ }_{n} q_{x}$ | ${ }_{n} p_{x}$ | $1_{x}$ | ${ }_{n} L_{x}$ | $\mathrm{T}_{\mathrm{x}}$ | $S_{x}$ | $e_{x}{ }^{0}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 79.752 | 0.070000 | 0.930000 | 100000 | 94932 | 6088846 | . 912674 | 60.89 |
| 1 | 11.745 | 0.043926 | 0.956074 | 93000 | 361405 | 5993914 | . 967347 | 64.45 |
| 5 | 2.454 | $0.012 ¢ 03$ | 0.987797 | 88915 | 447136 | 5632509 | . 991550 | 63.35 |
| 10 | 1.240 | 0.006185 | 0.993815 | 87830 | 437706 | 5191073 | . 993502 | 59.10 |
| 15 | 1,526 | 0.007605 | 0.992395 | 87287 | 434862 | 4753367 | . 990613 | 54.46 |
| 20 | 2.281 | 0.011346 | 0.988654 | 86623 | 430780 | 4318505 | . 986875 | 49.85 |
| 25 | 2.021 | 0.014999 | 0.985001 | 85640 | 425126 | 3887725 | . 982697 | 45.40 |
| 30 | 3.998 | 0.019806 | 0.980194 | 84355 | 417770 | 3462599 | . 977191 | 41.05 |
| 35 | 5.228 | 0.02582 .7 | 0.974173 | 82685 | 408241 | 3044829 | . 971879 | 36.82 |
| 40 | 6.190 | 0.030512 | 0.969488 | 80549 | 396761 | 2636588 | . 966337 | 32.73 |
| 45 | 7.625 | 0.037468 | 0.962538 | 78092 | 383405 | 2239827 | . 956730 | 28.68 |
| 50 | 10.262 | 0.050116 | 0.949884 | 75166 | . 66681.5 | 1856422 | . 941355 | 24.70 |
| 55 | 14.286 | 0.069131 | 0.930869 | 71399 | 345302 | 1489607 | . 914125 | 20.86 |
| 60 | 22.163 | 0.105335 | 0.894665 | 66463 | 315650 | 1144304 | . 872346 | 17.22 |
| 65 | 33.114 | 0.153157 | 0.846483 | 59462 | 275356 | 828654 | . 813670 | 13.94 |
| 70 | 50.526 | 0.225225 | 0.774775 | 50334 | 224049 | 553298 | . 729354 | 10.99 |
| 75 | 77.789 | 0.326318 | 0.673682 | 38998 | 16.2411 | 329248 | . 503684 | 8.44 |
| 80 | 193.151 | 0633246 | 0366754 | 26272 | 165837 | 165837 | - | 6.39 |

## TABLE 9A <br> 1970 LIFE TABLE OF THE PHILIPPINES: MALE

| Age | $1_{x}$ | $\mathrm{q}_{\mathrm{x}}$ | $L_{x}$ | $\mathrm{T}_{x}$ | $e_{x}{ }^{0}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 100000 | . 088900 | 93564 | 5524429 | 55.24 |
| 1 | 91110 | . 021139 | 89974 | 5430865 | 59.61 |
| 2 | 89184 | . 013744 | 88571 | 5340891 | 59.89 |
| 3 | 87958 | . 007970 | 87608 | 5252320 | 59.71 |
| 4 | 87257 | . 006017 | 86994 | 5164712 | 59.19 |
| 5 | 86732 | . 003597 | 86576 | 5077718 | 58.54 |
| 6 | 86420 | . 003402 | 86273 | 4991142 | 57.75 |
| 7 | 86126 | . 003088 | 85993 | 4904869 | 56.95 |
| 8 | 85860 | . 002784 | 85740 | 4818876 | 56.12 |
| 9 | 85621 | . 002172 | 85528 | 4733136 | 55.28 |
| 10 | 85435 | . 002048 | 85348 | 4647608 | 54.40 |
| 11 | 85260 | . 001607 | 85192 | 4562260 | 53.51 |
| 12 | 85123 | . 001421 | 85062 | 4477068 | 52.60 |
| 13 | 85002 | . 001494 | S4938 | 4392006 | 51.67 |
| 14 | 84875 | . 001814 | 84798 | 4307068 | 50.75 |
| 15 | 84721 | . 002077 | 84633 | 4222270 | 49.84 |
| 16 | 84545 | . 002153 | 84454 | 4137637 | 48.94 |
| 17 | 84363 | . 002347 | 84264 | 4053183 | 48.04 |
| 18 | 84165 | . 002661 | 84053 | 3968919 | 47.16 |
| 19 | 83941 | . 003086 | 83812 | :3884866 | 46.28 |
| 20 | 83682 | . 003585 | 83532 | 3801054 | 45.42 |
| 21 | 83382 | . 004006 | 83215 | 3717522 | 44.58 |
| 22 | 83048 | . 004347 | 82868 | 3634307 | 43.76 |
| 23 | 82687 | . 004584 | 82498 | 3551439 | 42.95 |
| 24 | 82308 | . 004750 | 82112 | 3468941 | 42.15 |
| 25 | 81.917 | . 004920 | 81716 | 33386829 | 41.34 |
| 26 | 81514 | . 005152 | 81304 | 3305113 | 40.55 |
| 27 | 81094 | . 005376 | 80876 | 3223809 | 39.75 |
| 28 | 80658 | . 005579 | 80433 | 3142933 | 38.97 |
| 29 | 80208 | . 005748 | 79978 | 3062500 | 38.18 |
| 30 | 79747 | . 005931 | 79510 | 2982522 | 37.40 |
| 31 | 79274 | . 006118 | 79032 | 2903012 | 36.62 |
| 32 | 78789 | . 006333 | 78540 | 2823980 | 35.84 |
| 33 | 78290 | . 006540 | 78034 | 2745440 | 35.07 |
| 34 | 77778 | . 006776 | 77514 | 2667406 | 34.30 |
| 35 | 77251 | . 006964 | 76.982 | 2589892 | 33.53 |
| 36 | 76713 | . 007157 | 76438 | 2512910 | 32.76 |
| 37 | 76164 | . 007418 | 75882 | 2436472 | 31.99 |
| 38 | 75599 | . 007725 | 75307 | 2360590 | 31.23 |
| 39 | 75015 | . 008078 | 74712 | 2285283 | 30.46 |
| 40 | 74409 | . 008440 | 74095 | 2210571 | 29.71 |
| 41 | 73781 | . 008756 | 73458 | 2136476 | 28.96 |
| - 42 | 73135 | . 009106 | 72802 | 2063018 | 28.21 |
| 43 | 72469 | . 009535 | 72124 | 1990216 | 27.46 |
| 44 | 71778 | . 010003 | 71419 | 1918092 | 26.42 |
| 45 | 71060 | . 010386 | 70691 | 1846673 | 25.99 |
| 46 | 70322 | . 010765 | 69944 | 1.775982 | 25.25 |
| 47 | 69565 | . 011284 | 69172 | 1706038 | 24.52 |
| 48 | 68780 | . 011966 | 68368 | 1636866 | 23.80 |
| 49 | 67957 | . 012802 | 67522 | 1568498 | 23.08 |
| 50 | 67087 | . 013594 | 66631. | 1500976 | 22.37 |


| Age | $1_{x}$ | $\mathrm{q}_{\mathrm{x}}$ | $\mathrm{L}_{x}$ | $\mathrm{T}_{\mathrm{x}}$ | $e_{x}{ }^{\text {o }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 51 | 66175 | 0.014341 | 65700 | 1434345 | 21.68 |
| 52 | 65220 | 0.015209 | 64730 | 1368645 | 20.98 |
| 53 | 64234 | 0.016222 | 63713 | 1303915 | 20.30 |
| 54 | 63192 | 0.017439 | 62641 | 1240202 | 19.63 |
| 55 | 62090 | 0.018731 | 61508 | 1177561 | 18.97 |
| 56 | 60927 | 0.020024 | 60317 | 1116053 | 18.32 |
| 57 | 59707 | 0.021304 | 59071 | 1055736 | 17.68 |
| 58 | 58435 | 0.022572 | 57776 | 996665 | 17.06 |
| 59 | 57116 | 0.023846 | 56435 | 938889 | 16.44 |
| 60 | 55754 | 0.024752 | 55050 | 882454 | 15.83 |
| 61 | 54346 | 0.025908 | 53618 | 827404 | 15.22 |
| 62 | 52890 | 0.027604 | 52140 | 773786 | 14.63 |
| 63 | 51389 | 0.029209 | 50619 | 721646 | 14.04 |
| 64 | 49849 | 0.031595 | 49062 | 671027 | 13.46 |
| 65 | 48274 | 0.033186 | 47473 | 621965 | 12.88 |
| 66 | 46672 | 0.034946 | 45856 | 574448 | 12.31 |
| 67 | 45041 | 0.037166 | 44204 | 528632 | 11.74 |
| 68 | 43367 | 0.039846 | 42503 | 484429 | 11.17 |
| 69 | 41639 | 0.043109 | 40742 | 441925 | 10.61 |
| 70 | 39844 | 0.046858 | 38911 | 401183 | 10.07 |
| 71 | 37977 | 0.050820 | 37012 | 362272 | 9.54 |
| 72 | 36047 | 0.054956 | 35054 | 325060 | 9.02 |
| 73 | 34061 | 0.059716 | 33044 | 290206 | 8.52 |
| 74 | 32027 | 0.064820 | 30989 | 257163 | 8.03 |
| 75 | 29951 | 0.070849 | 28890 | 226173 | 7.55 |
| 76 | 27829 | 0.078048 | 26743 | 197283 | 7.09 |
| 77 | 25657 | 0.086370 | 24549 | 170540 | 6.65 |
| 78 | 23441 | 0.096071 | 22315 | 145992 | 6.28 |
| 79 | 21189 | 0.107603 | 20049 | 123676 | 5.84 |
| 80 | 18909 | 0.114284 | 17829 | 103626 | 5.48 |
| 81 | 16748 | 0.127120 | 15684 | 85797 | 5.12 |
| 82 | 14619 | 0.134483 | 13636 | 70113 | 4.80 |
| 83 | 12653 | 0.149214 | 11709 | 56477 | 4.50 |
| 84 | 10765 | 0.162935 | 9888 | 44768 | 4.16 |
| 85 | 9011 | 0.177561 | 8211 | 34880 | 3.87 |
| 86 | 7411 | 0.193631 | 6694 | 26669 | 3.60 |
| 87 | 5976 | 0.210676 | 5347 | 19975 | 3.34 |
| 88 | 4717 | 0.229383 | 4176 | 14628 | 3.10 |
| 89 | 3635 | 0.248968 | 3183 | 10452 | 2.88 |
| 90 | 2730 | 0.270330 | 2361 | 7269 | 2.66 |
| 91 | 1992 | 0.293173 | 1700 | 4908 | 2.46 |
| 92 | 1408 | 0.316761 | 1185 | 3208 | 2.22 |
| 93 | 962 | 0.343035 | 797 | 3032 | 2.10 |
|  | 632 | 0.370253 | 515 | 1226 | 1.94 |
| 95 | 398 | 0.396985 | 319 | 711 | 1.78 |
| 96 | 240 | 0.429167 | 189 | 392 | 1.63 |
| 97 | 137 | 0.459854 | 106 | 203 | 1.48 |
| 98 | $\begin{array}{r}74 \\ \\ \hline 18\end{array}$ | 0.486486 | 56 | 97 | 1.31 |
| 99 100 | 38 | 0.526318 | 28 | 41 | 1.08 |
| 100 | 18 | 0.555556 | .. 13 | ... 13 | 1.82 |

TABLE 9B
1970 LIFE TABLE OF THE PHILIPPINES: FEMALE

| Age | $1_{x}$ | $\mathrm{q}_{\mathrm{x}}$ | $L_{x}$ | $\mathrm{T}_{\mathrm{x}}$ | $e_{x}{ }^{0}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 100000 | 0.070000 | 94932 | 6088846 | 60.89 |
| 1 | 93000 | 0.019505 | 91930 | 5993914 | 64.45 |
| 2 | 91186 | 0.012535 | 90614 | 5901984 | 64.72 |
| 3 | 90043 | 0.007341 | 89712 | 5811370 | 64.54 |
| 4 | 89382 | 0.005225 | 89149 | 5721658 | 64.01 |
| 5 | 88915 | 0.003430 | 88762 | 5632509 | 63.35 |
| 6 | 88610 | 0.002720 | 88490 | 5543747 | 62.56 |
| 7 | 88369 | 0.002309 | 88267 | 5455257 | 61.73 |
| ' 6 | 88165 | 0.002019 | 88076 | 5366990 | 60.87 |
| $\therefore 9$ | 87987 | 0.001784 | 87908 | 5278914 | 60.00 |
| ! 10 | 87830 | 0.001617 | 87759 | 5191073 | 59.10 |
| 11 | 87688 | 0.001243 | 87634 | 5103314 | 58.00 |
| ; 12 | 87579 | 0.001050 | 87533. | 5015680 | 57.00 |
| '13 | 87487 | 0.001063 | 87440 | 4928147 | 56;33 |
| 14 | 87394 | 0.001224 | 87340 | 4840707 | 55.39 |
| 15 | 87287 | 0.001375 | 87227 | 4753367 | 54.46 |
| "16 | 87167 | 0.001400 | 87106 | 4666140 | 53.53 |
| 17.7. | 87045 | 0.001471 | 86981 | 4579034 | 52.61 |
| "18 | 86917 | 0.001599 | 86848 | 4492053 | 51.68 |
| 19 | 86778. | 0.001786 | 86700 | 4405205 | 50.68 |
| 20 | 86623. | 0.001986 | 86537 | 4318505 | 49.85 |
| 21 | 86451 | 0.002128 | 86359 | 4231968 | 48.95 |
| :22 | 86267 ' | 0.002284 | 86168 | 41.45609 | 47.95 |
| 23 | 86070 | 0.002428 | 85966 | 4059441 | 47.16 |
| 24 | 85861 | 0.002574 | 85750 | 3973475 | 46.28: |
| : 25 | 85640 | 0.002697 | 85524 | 3887725 | 45.40 |
| , 26 | 85409 | 0.002845 | 85288 | 38022'00 | 44.52: |
| : 27. | 85166 | 0.002982 | 85039 | 3716913 | 43.64! |
| 28 | 84912 | 0.003180 | 84777 | 3631874 | 42.77 |
| 29 | 84642 | 0.003391 | 84498 | 3547097 | 41.92 |
| 130 | 84355 | 0.003580 | 84204 | 3462599 | 41.05 |
| 31 | 84053 | 0.003760 | 83895 | 3378395 | 40.19 |
| 32 | 83737 | 0.003965 | 83571 | 3294500 | 39.34 |
| 33 | 83405 | 0.004196 | 83230 | 3210929 | 38.50 |
| 34 | 83055 | 0.004741 | 82870 | 3127699 | 37.66 |
| 35 | 82685 | 0.004741 | 82489 | 3044829 | 36.82 |
| 36 | 82293 | 0.005031 | 82086 | 2962340 | 36.00 |
| :37 | 81879 | 0.005252 | 8.1664. | 2880254 | 35.18: |
| 38 | 81449 | 0.005464 | $81226^{\circ}$ | 2798590 | 34.36: |
| 39 | 81004 | 0.005617 | 80776 | 2717364 | 33.55 |
| 40 | 80549 | 0.005748 | 80318 | 2638588 | 32.73 |
| 41 | 80086 | 0.005919 | 79849 | 2556270 | 31.92: |
| 42 | 79612 | 0.006130 | 79368 | 2476421 | 31.11 |
| 43 | 79124 | 0.006395 | 78871 | 2397053 | 30.29 |
| 44 | 78618 | 0.006691 | 78355 | 2318182 | $29.49{ }^{\prime}$ |
| 45 | 78092 | 0.006941 | 77821 | 2239827 | 28.68: |
| 46 | 77550 | 0.007157 | 77272 | 2162006 | $27.88^{\prime}$ |
| -47 | 76995 | 0.007481 | 76707 | 2084734 | 27.08 |
| 48 | 76419 | 0.007943 | 76116 | 2008027 | 26.28 |
| 49 | 75812 | 0.008521 | 75489 | 1931911 | 25.48 |
| 50 | 75166 | 0.009060 | 74826 | 1856422 | 24.70 |


| Age | $1_{x}$ | $\mathrm{q}_{\mathrm{x}}$ | $L_{\text {x }}$ | T ${ }_{\text {x }}$ | $\mathrm{ex}^{\text {o }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 51 | 74485 | 0.009519 | 74130 | 1781596 | . 23.92 |
| 52 | 73776 | 0.010112 | 73403 | 1707466 | 23.14 |
| 53 | 73030 | 0.010804 | 72636 | 1634063 | 22.38 |
| 54 | 72241 | 0.011655 | 71820 | 1561427 | 21.61 |
| 55 | 71399 | 0.012311 | 70960 | 1489607 | 20.86 |
| 56 | 70520 | 0.012933 | 70064 | 1418647 | 20.12 |
| 57 | 69608 | 0.013878 | 69125 | 1348583 | 19.37 |
| 58 | 68642 | 0.015166 | 68122 | 1279458 | 18.64 |
| 59 | 67601 | 0.016834 | 67032 | 1211336 | 17.92 |
| 160 | 66463 | 0.018416 | 65846 | 1144304 | 17.22 |
| . 61 | 65229 | 0.020175 | 64571 | 1078458 | 16.53 |
| , 62 | 63913 | 0.021873 | 63214 | 1013887 | 15.86 |
| . 63 | 62515 | 0.023738 | 61773 | 950673 | 15.21 |
| , 64 | 61031 | 0.025708 | 60246. | 888900 | 14.56 |
| , 65 | 59462 | 0.027833 | 58635 | 828654 | 13.94 |
| . 66 | 57808 | 0.030065 | 56939 | 770019 | 13.32 |
| . 67 | 56070 | 0.032531 | 55158 | 713080 | 12.72 |
| -68 | 54246 | 0.035228 | 55290 | 657922 | 12.13 |
| -69 | 52335 | 0.038234 | 51334 | 604632 | 11.55 |
| "70 | 50334 | 0.041801 | 49282 | 553298 | 10.99 |
| 71 | 48230 | 0.045718 | 47128 | 504016 | 10.45 |
| $\cdot 72$ | 46025 | 0.049690 | 44882 | 456888 | 9.93 |
| 73 | 43738 | 0.053706 | 42564 | 412006 | 9.42 |
| 74 | 41389 | 0.057769 | 40194 | 369442 | 8.93 |
| 75 | 38998 | 0.068835 | 37774 | 329248 | 8.44 |
| 76 | 36551 | 0.068835 | 35293 | 291474 | 7.97 |
| 77 | 34035 | 0.075364 | 32752 | 256781 | 7.53 |
| 78 | 31470 | 0.082428 | 30173 | 223429 | 7.10 |
| '79 | 28876 | 0.090179 | 27419 | 193256 | 6.69 |
| 80 | 26272 | 0.096871 | 24844 | 165837 | 6.39 |
| 81 | 23727 | 0.105281 | 22478 | 140993 | 5.94 |
| :82 | 21229 | 0.114278 | 20016 | 118515 | 5.58 |
| 83 | 18803 | 0.124023 | 17637 | 98499 | 5.24 |
| :84 | 16471 | 0.134600 | 15362 | 80862 | 4.90 |
| 85 | 14254 | 0.145924 | 13214 | 65500 | 4.60 |
| 86 | 12174 | 0.158206 | 11211 | 52286 | 4.29 |
| :87 | 10248 | 0.171253 | 9370 | 41075 | 4.01 |
| 88 | 8493 | 0.185329 | 7700 | 31705 | 3.73 |
| 89 | 6919 | 0.200462 | 6226 | 23999 | 3.47 |
| '90 | 5532 | 0.216739 | 4932 | 17773 | 3.21 |
| 91 | 4333 | 0.234018 | 3826 | 12841 | 2.96 |
| 92 | 3319 | 0.252184 | 2900 | 9015 | 2.72 |
| 93 | 2482 | 0.271958 | 1784 | 6115 | 2.46 |
| 94 | 1807 | 0.292750 | 1542 | 4331 | 2.40 |
| 95 | 1278 | 0.314554 | 1077 | 2789 | 2.18 |
| 96 | 876 | 0.337900 | 728 | 1712 | 1.95 |
| 97 | 580 | 0.363793 | 474 | 984 | 1.70 |
| 98 | 369 | 0.387534 | 298 | 510 | 1;38 |
| 99 | 226 | 0.415929 | 179 | 212 | . 94 |
| 100 | 132 | 0.439394 | 103 | 103 | . 78 |

## V. SUMMARY AND CONCLUSIONS -

Indications are clear that the level of mortality in the Philippines during the last decade has indeed continued to decline. Although, the crude death rate has been estimated only on the basis of fragmentary data, it is highly probable that the true value could not be far from the estimate of about 10 or 11 per thousand. A glance at Table 10 would reveal that the present mortality level of the Philippines is relatively below the level of the other developing countries but definitely, it has not yet achieved the level already attained by the developed countries.

TABLE 10
Crude Death Rates for Some Countries in the World

| Countries | Year | Crude Death <br> Rate (per <br> Thousand) |
| :--- | :--- | :--- |

Developing Countries

| Philippines | 1970 | 10.4 |
| :--- | :---: | :---: |
| India | $1966-1970$ | 16.7 |
| Thailand | $1966-1970$ | 10.4 |
| Turkey | 1967 | 14.6 |
| Libya | 1967 | 15.8 |
| Peru | $1966-1970$ | 11.1 |

Developed Countries

| U.S.A. | 1970 | 9.4 |
| :--- | :--- | :--- |
| Israel | 1970 | 7.0 |
| Japan | 1970 | 6.9 |
| Switzerland | 1970 | 9.0 |
| New Zealand | 1970 | 8.8 |
| U.S.S.R. | 1969 | 8.1 |

Source: United Nations, Demographic Year Book, 1970
Concomitant with a decrease in the crude death rate is, of course, an increase in the expectation of life at birth. Table 11 shows the expectation of life at birth of Filipinos for several years as obtained from earlier life tables.

Table 11 also indicates that under the present mortality conditions, a Filipino, at the time of his birth, can look forward to live for about 58 years. His countryman who was born in 1960 then had only about 53 years ${ }^{10}$ to expect which means that in a span of 10 years, life expectation at the moment of birth has increased by about 5 years or an overage gain of .5 year per annum during the last decade. In the previous decade, the average annual gain in expectation of life was less than .2 year per year only. This goes to show that during the 1960's there has been an accelerated progress in the improvement of mortality conditions in the Philippines. This is possibly due to the intensified public health programmes undertaken by the government not only by extending health facilities and services to the people but also by educating them on the proper sanitation and nutrition practices.

TABLE 11
Expectation of Life at Birth in the Philippines: 1902-1970

| Year | Life Expectancy at <br> Birth (in years) |  |
| :---: | :---: | :---: |
|  | Male | Female |
| 1918 | 11.54 | 13.92 |
| 1938 | 25.17 | 26.07 |
| 1948 | 440 | 47.72 |
| 1960 | 48.81 | 53.36 |
| 1970 | 51.17 | 55.00 |

${ }^{n}$ Reproduced from the article, "Philippine Population Growth and Health Development", by Wilfredo L. Reyes, published in the First Conference on Population, 1965, University of the Philippines Press, Quezon City, 1966, p. 426.

The mortality rate by age, as indicated in the present life table, follows the universal pattern. It "starts at a high peak immediately after birth, falls to a minimum

[^10]in the early teens, and then rises, gradually at first and more and more rapidly as age increases until the last survivors of the generation are extinguished." ${ }^{11}$

As regards sex differential in mortality, there is no question that males are really subject to higher mortality risks than are the females. Whereas an infant girl has about 61 years of life expectation at birth, the male infant has only about 55 years or an advantage of more or less 6 years on the part of the female. This does not indicate, however, that the female will outlive the male by 6 years on the average. As figure A depicts, this sex difference in life expectation tends to narrow down as the population grows older.

As should be expected, the age-specific death rates of the males are greater than those of the females. See Figure B. An exception nevertheless occurs at the highest age group where about 191 out of 1000 males die in contrast to 193 for females. This, however, should not be given much credit because this could have been due only to faulty data. Anyway, this being the highest age group, it does not have so much effect on the overall picture of the mortality levels. The pattern of mortality rates by age are the same for both sexes. As indicated in Table 8A and 8B, the mortality rates at infancy are high, about 104 per thousand for males and 80 per thousand for females. When they complete their first year of life, the risks of dying are considerably reduced for both sexes and this continues to decrease until they reach their adolescene. After that their chances of survival consistently decrease up to the highest ages when death becomes inevitable. In terms of life expectancy, there is a marked increase in the number of years expectation of life from birth to the first year of life. The highest expectation of life, under the given mortality conditions, is achieved at about the age of 3 after which it starts to decrease gradually.

Finally, although the country should be happy about its achievement or success in bringing down the level of mortality, it should be aware that this has a very im-

[^11]portant implication on its growth rate. Low death rate necessarily causes a higher rate of increase. Therefore, if it should be the aim of the government to keep down its population growth, it should heighten its effort to reduce the fertility level of the country. Otherwise, since mortality is expected to decrease further, the future of the country is unthinkable with its population growing by leaps and bounds.

FIGURE A
Age-Specific Death Rates in the Philippines, by Sex, 1970


Figure B.

- The Life Expectancy Curve for the Philippines, By Sex; 1970



[^0]:    ${ }^{1}$ Paper presented at the annual conference of the Philippine Statistical Association, July 16, 1974.

    * Senior Statistician, Population Research Unit, National Census \& Statistics Office.

[^1]:    ${ }^{\text {a }}$ The Population of 1960 , which was obtained as of February 15, 1960 was adjusted to May 6, 1960 in order to make the interval between 1960 and 1970 exactly 10 years.
    ${ }^{1}$ United Nations, Methods of Estimating Basic Demographic Measures. from Incomplete Data, Manual IV, Population Studies No. 42, New York 1967, p. 12.

[^2]:    ${ }^{2}$ The appropriate set of ${ }_{5} L_{x}$ values is chosen from among the different levels of the Model Life Tables in a spirit of trial and error.

    - Arriaga, Edwards, Nezu Life Tables for Latin American Population in the Nineteenth and Twentieth Centuries, Population Monograph, Series No. 3 University of California, Berkeley, California, 1968.
    - For a detailed description of the method of estimating births by Reverse Survival, the reader is referred to the United Nations Manual III, Methods for Population Projections, by Scx and Agc, Population Studies No. 25, iNew York, p. 45-46.

[^3]:    a/ Proportion of the population aged $x$ to $x+5$ to the total population in 1970.
    b/ Obtained from the Princeton Model Life Tables.
    The straight line equations of $Y$ fitted by the Least Squares Method are:
    Level 14: $\mathbf{Y}=-9.97857-.0314179(x+2.5) ; r_{1}=.0314179$
    Level 13: $\mathrm{Y}=-9.958735-.0306596(\mathrm{x}+2.5) ; \mathrm{r}_{2}=.0306596$
    Interpolating linearly between $r_{1}$ and $r_{2}$ for $r=0310273$ (the observe
    female growth rate), we obtain the mortality level of 13.48 which gives a
    value of the Crude Death Rate of 14.78 per thousand.

[^4]:    s Bureau of the Census and Statistics, Birth and Death Registration, Release No. 13, Series of 1965.

[^5]:    ${ }^{6}$ Based on the registered number of deaths for the period 1960 to 1970 , male deaths exceed female deaths by a margin of only $22 \%$. The results of methods A and B indicate much wider difference which is contrary to observed conditions.

[^6]:    : E Estimates apply for year 1965
    ${ }^{1}$ Estimates apply for year 1970

[^7]:    : Reed, Lowell J. and Merrell Margaret, "A Short Method for Constructing an Abridged Life Table". Reproduced in the U.S. Bureau of the Census, Handbook of Statistical Methods for Demographers, 1951, pp. 12-27.

[^8]:    ${ }^{8}$ The radix, symbolized by ${ }^{1} \mathrm{o}$, is an arbitrary value used to designate the number of living persons at age 0 .

[^9]:    9. Shryock, Henry and Siegel, Jacob, The Methods and Materials of Demography, U.S. Bureau of the Census and Statistics, Washington, D.C. : 1971, p. 875.
[^10]:    ${ }^{10}$ Hizon, Manuel and de Castro, Isagani, 1960 Population Mortality From Census Figures, Paper submitted to the 1965 Annual Conference of the Actuarial Society of the Philippines, Baguio City.

[^11]:    ${ }^{11}$ United Nations, The Situation and Recent Trends of Mortality in the World, Population Bulletin No. 6, 1962, p. 51.

